
 // Esercizio 5 del laboratorio di Informatica 2 - Programmazione di rete.
 // Sviluppare un server che si mette in attesa di connessioni su un port dato.
 // Il server accetta due connessioni in contemporanea, apre un figlio per ciascuna

// connessione.
// Ciascun figlio entra in un ciclo,in cui: riceve un carattere terminatore dal
// client, riceve una stringa (max 64 caratteri) terminata dal terminatore, conta i
// caratteri della stringa (terminatore incluso) e restituisce il risultato al
// client. Esce dal ciclo quando riceve come terminatore il carattere ‘q’ e poi
// termina.
// Il processo padre deve attendere la terminazione dei figli, dopo che entrambi
// sono stati chiusi si connette ad un server di terminazione sul port dato
// (diventa quindi un client), gli spedisce il carattere ‘q’, attende un carattere
// di risposta, chiude le connessioni e poi termina. Come si può vedere è molto
// simile al precedente e la prima parte di codice è perfettamente identica.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
 // Include la libreria contenente le funzioni sulle stringhe

#define SERVER "131.175.75.61"
 // Questa costante contiene l'IP del server del laboratorio di informatica.
#define PORT 35829
 // Questa costante contiene il numero del port su cui dovete restare in ascolto.
 // Inserite il valore che vi indica il server nel testo del problema.
#define END_PORT 34567
 // Questa costante contiene il numero del port tramite cui connettersi al server di

// terminazione. Va sostituito con il valore che vi indica il server nel testo del
// problema.

#define MAXCONN 5
 // Indica il numero massimo di connessioni che il vostro server accetta in coda.

void addr_inizialize();
 // Funzione che inizializza una variabile di tipo sockaddr_in che identifica un
 // punto terminale della trasmissione.

void main()
{
 // DEFINIZIONE DELLE VARIABILI

 int new_sd, acc_sd, end_sd;
 // Definisco tre identificatori di socket, uno per accettare la connessione,
 // uno per la comunicazione e il terzo per la connessione al server di

// terminazione.
 struct sockaddr_in server_addr, client_addr, end_addr;
 // Definisco tre variabili indirizzo, una è per il server, l'altra per il client,

// la terza per il server di terminazione.
 int server_len = sizeof(server_addr);
 int client_len = sizeof(client_addr);
 int end_len = sizeof(end_addr);
 // Definisco tre variabili a cui assegno la dimensione delle strutture indirizzo.
 char term;
 // Definisco la variabile in cui memorizzo il carattere terminatore.
 char stringa[64];
 // Definisco l’array di caratteri in cui memorizzo la stringa inviata dal client.
 int cont;
 // Definisco una variabile contatore per contare il numero di caratteri ricevuti.
 char conto[3];

// Definisco la stringa in cui memorizzo il numero di caratteri dopo la conversione
// da intero a stringa. La lunghezza massima è 3, due cifre (max 64 caratteri) ed
// il carattere “\n” richiesto dal testo.

 pid_t pid;
 // Definisco una variabile che contiene il PID dei figli.
 int i;
 // Definisco un contatore per il ciclo for.
 int status;
 // Definisco un intero che riceve lo stato di ritorno dei figli.
 char ch;
 // Definisco una variabile carattere per inviare e ricevere un carattere.

 // INIZIALIZZAZIONE DELLA CONNESSIONE

 addr_inizialize(&server_addr, PORT, INADDR_ANY);
 // "Riempio" la variabile indirizzo del server, la porta è quella indicata dalla
 // costante PORT. La costante INADDR_ANY rappresenta tutti gli indirizzi con
 // cui la vostra macchina è collegata ad una rete. Questo perchè il vostro PC può
 // essere collegato a più reti, ad esempio ad Internet con un IP e ad una rete
 // locale (LAN) con un'altro IP.

 acc_sd = socket(AF_INET, SOCK_STREAM, 0);
 // Creo un server per accettare le richieste, utilizzo un protocollo della famiglia
 // TCP/IP e di preciso il protocollo TCP.
 bind(acc_sd, &server_addr, server_len);
 // Associo al canale identificato da acc_sd uno dei punti terminali (il server).
 listen(acc_sd, MAXCONN);
 // Definisco la lunghezza della coda delle connessioni in attesa.
 printf("\n Sono in attesa di connessione...\n");

 for (i = 0; i < 2; i++)
 { // Apro un ciclo che viene ripetuto due volte per l’accettazione delle

// connessioni.
// Questo viene ripetuto due volte perché i figli da creare sono due.

 new_sd = accept(acc_sd, &client_addr, &client_len);
 // Mi metto in attesa di connessione, appena ho una richiesta di connessione

// la associo al socket new_sd. Nella struttura client ottengo i dati
// dell'altro punto terminale, nella variabile client_len la dimensione di
// questa struttura.

 pid = fork();
 // Sdoppio il processo creando un processo figlio.
 if (pid == 0)
 { // Se il pid è uguale a zero sono nel figlio.

 // DURANTE LA CONNESSIONE

 recv(new_sd, &term, 1, 0);
 // Ricevo il carattere terminatore.

 while (term != ‘q’)
 { // Se il terminatore è diverso dal carattere ‘q’ entro nel ciclo, altrimenti

// lo salto. Questo test viene ripetuto dopo la fine del ciclo.
// Il ciclo è sostanzialmente molto simile all’esercizio precedente, a parte
// l’istruzione recv alla fine del ciclo stesso che è utilizzata per il test.

 cont = 0;
 // Azzero il contatore.
 do
 {
 // Inizio un ciclo che si ripete finchè non ricevo il carattere terminatore.
 recv(new_sd, &stringa[cont], 1, 0);
 // Ricevo il carattere e lo inserisco in fondo alla stringa.
 cont++;
 // Incremento il contatore;
 } while (stringa[cont-1] != term);

// Il test di chiusura del do-while controlla se l’ultimo carattere ricevuto

// (quello della posizione cont-1 perchè il contatore è già stato
// incrementato) è uguale al terminatore. Se il test è vero termina il ciclo,
// altrimenti lo ripete.

 sprintf(conto, “%d\n”, cont);
 // Converto cont da intero (parametro %d) a stringa e metto il risultato

// nella stringa conto.
 send(new_sd, conto, strlen(conto), 0);
 // Invio al client la stringa che rappresenta il numero di caratteri della

// stringa ricevuto. Non c’è bisogno del simbolo “&” prima di conto perché
// l’identificatore conto è un puntatore al primo carattere della stringa. In
// pratica scrivere “conto2” è equivalente a scrivere “&conto[0]”. Il numero
// di caratteri da inviare è ottenuto mediante la funzione strlen, che
// restituisce la dimensione in caratteri di una stringa. Non si può usare
// l’operatore “sizeof()” perché questo restituirebbe la dimensione del
// puntatore e non quella della stringa.

 recv(new_sd, &term, 1, 0);
// Ricevo un nuovo terminatore dal client e torno al test all’inizio del
// ciclo. Se il test sarà verificato (terminatore diverso da ‘q’) il ciclo
// verrà ripetuto.

 } // Chiudo il while.
 close(new_sd);
 // Chiudo la connessione.
 exit(0);
 // Termino il figlio.
 } // Chiudo l’if, ovvero torno nel processo padre.
 } // Chiudo il for. Se ho già creato entrambi i figli continuo con l’istruzione

// successiva, altrimenti ripeto dalla fork.

 wait(&status);
 wait(&status);
 // Attendo la chiusura di entrambi i figli. Il valore assunto dalla variabile

// status non ha importanza perché non ci sono frammenti di codice per il controllo
// degli errori.

 addr_inizialize(&end_addr, END_PORT, (long) inet_addr(SERVER));
 // Inizializzo la variabile contenente l’indirizzo del server, che viene convertito

// da stringa (noi lo abbiamo scritto nel formato xxx.xxx.xxx.xxx) al formato a 36
// bit, quello usato dalla rete.

 end_sd = socket(AF_INET, SOCK_STREAM, 0);
 // Creo un socket per la connessione con il server terminale.
 connect(end_sd, &end_addr, end_len);
 // Eseguo la connect, passandogli il socket da utilizzare, l’indirizzo del server e

// la dimensione di questo indirizzo.
 ch = ‘q’;
 send(end_sd, &ch, 1, 0);
 // Invio il carattere contenuto nella variabile ch (ovvero ‘q’).
 recv(end_sd, &ch, 1, 0);
 // Ricevo il carattere dal server.

 // CHIUSURA DELLE CONNESSIONI

 close(end_sd);
 close(acc_sd);
 close(new_sd);
 // Chiudo tutti i canali.
}

void addr_inizialize(struct sockaddr_in * indirizzo, int port, long IPaddr);
 // E' il codice della routine definita prima del main, per la spiegazione rimando
 // al libro del Pelagatti, pagina 12.
{
 indirizzo->sin_family = AF_INET;

 indirizzo->sin_port = htons((u_short) port);
 indirizzo->sin_addr.s_addr = IPaddr;
}

